Wednesday, April 30, 2025

Cloud Computing, AI & ML – Complete Tutorial

 

Cloud Computing, AI & ML – Complete Tutorial

1. Introduction to Cloud Computing, AI & ML

What is Cloud Computing?

Cloud computing delivers computing services (servers, storage, databases, networking, AI, analytics) over the Internet ("the cloud").

✅ Key Benefits:
✔ Scalability (grow as needed)
✔ Cost-Efficiency (pay-as-you-go)
✔ Global Availability (access from anywhere)

What is AI & Machine Learning (ML)?

  • Artificial Intelligence (AI): Machines mimicking human intelligence.

  • Machine Learning (ML): AI subset where machines learn from data without explicit programming.

✅ Key Applications:
✔ AI: Chatbots, self-driving cars, recommendation systems.
✔ ML: Fraud detection, medical diagnosis, stock predictions.


2. Cloud Computing Basics

Cloud Service Models

Service ModelDescriptionExample
IaaS (Infrastructure as a Service)Provides virtualized computing resources (servers, storage)AWS EC2, Azure VMs
PaaS (Platform as a Service)Provides a platform for app development & deploymentGoogle App Engine, Heroku
SaaS (Software as a Service)Delivers software applications over the InternetGmail, Slack, Zoom

Cloud Deployment Models

  • Public Cloud (AWS, Azure, GCP)

  • Private Cloud (On-premises cloud)

  • Hybrid Cloud (Mix of public & private)

Getting Started with AWS (Example)

  1. Sign up for AWS Free Tier (aws.amazon.com)

  2. Launch an EC2 Instance (Virtual Server)

    • Choose OS (Ubuntu, Windows)

    • Select instance type (t2.micro for free tier)

    • Configure security groups (allow SSH/HTTP)

  3. Connect via SSH

    sh
    Copy
    Download
    ssh -i key.pem ubuntu@<public-ip>

3. Machine Learning (ML) Fundamentals

Types of Machine Learning

TypeDescriptionExample
Supervised LearningLearns from labeled data (input-output pairs)Spam detection
Unsupervised LearningFinds patterns in unlabeled dataCustomer segmentation
Reinforcement LearningLearns by trial & error (rewards/punishments)Game AI (AlphaGo)

Popular ML Algorithms

  • Regression: Predicts continuous values (e.g., house prices)

  • Classification: Categorizes data (e.g., spam vs. not spam)

  • Clustering: Groups similar data (e.g., customer segments)

ML Workflow

  1. Data Collection (Kaggle, APIs, databases)

  2. Data Preprocessing (cleaning, normalization)

  3. Model Training (using algorithms like Linear Regression, Decision Trees)

  4. Evaluation (accuracy, precision, recall)

  5. Deployment (cloud, edge devices)


4. AI & ML on the Cloud

Why Use Cloud for AI/ML?

✔ Access to GPUs/TPUs (faster training)
✔ Managed ML Services (no infrastructure setup)
✔ Scalability (handle large datasets)

Top Cloud AI/ML Services

Cloud ProviderAI/ML ServiceUse Case
AWSSageMakerBuild, train, deploy ML models
Google CloudVertex AIEnd-to-end ML pipeline
Microsoft AzureAzure MLDrag-and-drop ML studio

Example: Deploying an ML Model on AWS SageMaker

  1. Upload dataset to S3

    python
    Copy
    Download
    import boto3
    s3 = boto3.client('s3')
    s3.upload_file('data.csv', 'my-bucket', 'data.csv')
  2. Train a Model

    python
    Copy
    Download
    from sagemaker import LinearLearner
    estimator = LinearLearner(role='SageMakerRole',
                             instance_count=1,
                             instance_type='ml.m4.xlarge')
    estimator.fit({'train': 's3://my-bucket/data.csv'})
  3. Deploy for Predictions

    python
    Copy
    Download
    predictor = estimator.deploy(initial_instance_count=1,
                                instance_type='ml.t2.medium')
    result = predictor.predict([1.5, 3.2, 5.1])  # Example input

5. AI-as-a-Service (AIaaS)

Cloud providers offer pre-trained AI models via APIs:

ServiceFunctionExample
AWS RekognitionImage & video analysisFace detection
Google Vision AIOCR, object detectionText extraction
Azure Cognitive ServicesSpeech, language, visionSentiment analysis

Example: Using AWS Rekognition (Python)

python
Copy
Download
import boto3

client = boto3.client('rekognition')
response = client.detect_labels(
    Image={'S3Object': {'Bucket': 'my-bucket', 'Name': 'photo.jpg'}}
)
print(response['Labels'])  # Outputs detected objects

6. Future Trends

🚀 AI at the Edge (ML on IoT devices)
🚀 AutoML (automated machine learning)
🚀 Quantum Computing + AI (faster computations)


7. Hands-On Project: Cloud-Based Sentiment Analysis

Step 1: Set Up Google Cloud Natural Language API

  1. Enable Google Cloud Natural Language API.

  2. Install the client library:

    sh
    Copy
    Download
    pip install google-cloud-language
  3. Run sentiment analysis:

    python
    Copy
    Download
    from google.cloud import language_v1
    
    client = language_v1.LanguageServiceClient()
    text = "I love cloud computing and AI!"
    document = language_v1.Document(content=text, type_=language_v1.Document.Type.PLAIN_TEXT)
    sentiment = client.analyze_sentiment(request={'document': document}).document_sentiment
    print(f"Sentiment: {sentiment.score} (Magnitude: {sentiment.magnitude})")

Step 2: Deploy as a Cloud Function

  1. Go to Google Cloud Functions.

  2. Deploy the Python code as an HTTP-triggered function.

  3. Call it via a REST API.


Conclusion

TechnologyKey Takeaway
Cloud ComputingProvides scalable, cost-effective infrastructure for AI/ML
AI/MLEnables smart applications via data-driven learning
Cloud AI ServicesSimplifies AI deployment with pre-built models

No comments:

Post a Comment